Nuprl Lemma : es-is-prior-interface-pred 11,40

es:ES, X:AbsInterface(Top), e:E.
((e  prior(X)))  (((first(e))) & (((pred(e X))  ((pred(e prior(X))))) 
latex


Definitions(last change to x before e), @e(xv), e(e1,e2].P(e), loc(e), True, inl x , tt, inr x , ff, P  Q, x  dom(f), e(e1,e2].P(e), e[e1,e2].P(e), e[e1,e2].P(e), e[e1,e2).P(e), e[e1,e2).P(e), ee'.P(e), e<e'P(e), ee'.P(e), e<e'.P(e), e c e', (e < e'), e loc e' , (e <loc e'), l_disjoint(T;l1;l2), (x  l), Outcome, q-rel(r;x), r < s, y is f*(x), (xL.P(x)), xLP(x), x f y, a < b, a <p b, a  b, a ~ b, b | a, x:AB(x), Dec(P), {T}, E(X), case b of inl(x) => s(x) | inr(y) => t(y), P  Q, prior(X), if b then t else f fi , P  Q, A c B, first(e), False, Void, t.1, E, e  X, pred(e), let x,y = A in B(x;y), AbsInterface(A), ES, Top, P & Q, xt(x), first(e), pred(e), A, <ab>, x,yt(x;y), pred!(e;e'), , SWellFounded(R(x;y)), constant_function(f;A;B), b, , e < e', r  s, val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), , type List, Msg(M), kind(e), loc(e), Knd, kindcase(ka.f(a); l,t.g(l;t) ), EOrderAxioms(Epred?info), x:A  B(x), IdLnk, left + right, Unit, EqDecider(T), Type, P  Q, strong-subtype(A;B), , Id, f(a), a:A fp B(a), EState(T), x:AB(x), x:AB(x), t  T, s = t
Lemmassubtype rel wf, EState wf, Id wf, rationals wf, member wf, strongwellfounded wf, pred! wf, loc wf, not wf, assert wf, constant function wf, kindcase wf, Knd wf, top wf, bool wf, cless wf, qle wf, val-axiom wf, nat wf, unit wf, Msg wf, IdLnk wf, EOrderAxioms wf, deq wf, event system wf, es-is-interface wf, es-pred wf, rev implies wf, es-E wf, es-E-interface wf, es-prior-interface wf, decidable assert, false wf, iff wf, es-interface wf, es-locl-iff, es-is-prior-interface, bfalse wf, btrue wf, true wf, es-causl wf, es-loc wf, es-locl wf, es-pred-locl, es-le weakening, es-locl transitivity2

origin